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Abstract—Can software engineers effectively leverage deduc-1

tive verifiers for Rust without an established formal verification2

background? In this case study, we investigate the Prusti and3

Creusot deductive verifiers for Rust and use them to formally4

verify a practical union-find data structure. The main verification5

engineer in our study did not previously have a verification6

background and so serves as a proxy for the target users of7

deductive Rust verifiers. Over the course of this study, we8

observed user obstacles due to differences between the devel-9

opment process of verification contracts and the programming10

process that software engineers are typically used to. From11

this study, we created tool-agnostic recommendations to make12

the process more accessible for Rust programmers. During our13

work, we maintained direct communication with the developers14

of both tools. Thus, to design a scalable learning experience15

for a growing number of programmers, our recommendations16

focus on reducing the need for expert assistance during the17

verification process. We suggest that changes to the level of18

abstraction of the underlying verification mechanisms, which can19

be expressed in the user interface and learning resources for the20

respective tools, can reduce the logical complexity of verification21

and make these tools more accessible to a broader audience.22

Overall our work demonstrates that a sufficiently motivated23

developer can use current Rust automated verifiers on practical24

code, and develops recommendations to enable further adoption25

of deductive verifiers within the Rust programming community.26

Index Terms—Formal Verification, Rust, Usability, Case Study,27

Deductive Verification.28

I. INTRODUCTION29

Safety and correctness are essential to critical systems30

software. Usage of the Rust programming language serves as31

one approach towards achieving software safety. Rust ensures32

memory-safety and prevents out-of-bounds memory accesses33

such as the one responsible for the global CrowdStrike incident34

in 2024 [1]. Additionally, Rust is accessible to a wide range35

of developers that are not experts in programming languages,36

memory safety, or formal methods. As a result, Rust has seen37

increased use in critical systems such as the Linux kernel [2].38

Although it is an important property, memory safety is only39

part of the safety and correctness requirements of critical sys-40

tems software. One approach to ensuring these requirements41

is formal verification, which uses mathematical proofs to42

make guarantees about safety and correctness. Semi-automated43

verification languages such as Dafny allow programmers to44

write code specifically designed for verification [3]. There are45

a growing number of tools for formal verification of Rust46

programs, which can enable software engineers to ensure47

stronger correctness properties about their programs beyond48

just memory safety. One path towards widespread adoption of49

these tools is to ensure they are as accessible as Rust itself. A50

key question we ask here is this: are current Rust verification 51

tools ready to be used by programmers without prior 52

experience in formal verification? 53

To begin to answer this question, we performed an initial 54

feasibility study to determine how a programmer with prior 55

Rust knowledge but no prior exposure to formal verification 56

tools would verify an existing Rust library. Focusing on a 57

single programmer, rather than a group, made it feasible 58

to capture a rich history of the programmer’s progress and 59

roadblocks that made the activity difficult. It also made it 60

feasible to have discussions with the developers of these tools 61

to provide detailed explanations of how to use the tools and 62

to fix bugs in the tools that were encountered. The intent 63

is to pave the way for future user studies in this area by 64

documenting what information and learning was needed for a 65

programmer without a formal methods background to succeed. 66

More specifically, this study focused on applying the de- 67

ductive verifiers Prusti [4] and Creusot [5] to formally verify 68

a union-find data structure from the Rust e-graphs library, 69

egg [6]. This practical union-find implementation is simple and 70

self-contained, yet it enables e-graphs to perform efficient and 71

optimized code refactorings. In the process, we also contribute 72

the first verification of union-find with path compression using 73

an automated verifier. 74

For formal verification to integrate into the software de- 75

velopment process, the user experience of developing con- 76

tracts should be as close to developing code as possible. We 77

identified several areas where usability improvements could 78

significantly benefit Rust programmers in formal verification, 79

including straightforward setup and onboarding, enhanced 80

support for debugging verification failures, user guides aimed 81

toward learners, and intuitive mechanisms for expressing logic 82

to model data. 83

In summary, this paper contributes the following: 84

• The first verification with automated verifiers of a realistic 85

union-find data structure (Section III). 86

• A report of the challenges encountered in verifying a 87

union-find data structure with the deductive verifiers 88

Creusot and Prusti (Section IV). 89

• A set of recommendations for designing usable deductive 90

verifiers which would overcome the challenges encoun- 91

tered during the study (Section V). 92

Overall our work provides insights on the successful use 93

(and pitfalls) of Rust verifiers by a typical Rust programmer, 94

laying the foundation for mainstream use of deductive verifiers 95

in software development with Rust. 96



II. BACKGROUND97

A. Verification tools98

This study utilized two verification tools, Prusti and Creusot,99

which are both designed to prevent “panics” at runtime and to100

enable the development of contracts to allow users to specify101

correct behavior. The contracts of both of these tools aim to102

be syntactically similar to natural Rust code—utilizing Rust103

attributes in the form of #[Attr] as to be ignored during104

regular program compilation. Preconditions and postconditions105

are represented by requires and ensures statements respec-106

tively. Users may also write functional predicates, specify loop107

invariants, and reason over quantifiers in a similar manner with108

minor syntactical differences between the two tools. Neither109

of these tools expose users to separation logic—instead uti-110

lizing Rust’s ownership properties to represent prophecies in111

Creusot and pledges in Prusti—and neither currently support112

verifying unsafe Rust code. Despite surface-level similarities,113

the usability, logic necessary to prove goals, and verification114

frameworks of these two tools differ.115

1) Creusot: Creusot is a verification tool that translates116

Rust code into Coma, a custom intermediate verification117

language, to be analyzed by Why3 [7]. The Why3 platform118

leverages several different SMT solvers and proof strategies119

that can be executed automatically. Creusot users need to120

install Why3 IDE to understand where contracts fail in the121

original Rust program and to debug effectively. Creusot’s122

specification language, Pearlite, best interprets data in terms123

of a logical model type which is compatible with Why3. For124

several standard Rust datatypes, appending @ to the variable is125

enough to derive this model, otherwise a ShallowModel trait126

must be implemented for it [5].127

2) Prusti: Prusti is an automated Rust verifier built on the128

Viper verification framework [8]. Its intended use is within the129

Prusti Assistant VS Code extension where it is integrated as130

if it were a “stricter compiler for Rust” [4]. Prusti Assistant131

displays errors and failed contract checks in the same style132

as Rust compiler errors, with failing contracts underlined133

in red. This familiar feedback simplifies understanding and134

debugging. Prusti can reason directly about several native Rust135

datatypes, but lacks support for others such as slices and136

arrays.137

B. Union-find138

In the union-find data structure, a collection of disjoint139

sets are represented as a forest of trees, where each tree is140

defined by a parent relation pointing from child to parent. This141

differs from a classical forest of trees, where the parent-to-142

child relationship is typically explicitly maintained. To achieve143

the desired asymptotic complexity for union-find operations,144

path compression techniques may be applied during queries,145

dynamically altering the tree structure to optimize future146

lookups. However, the child-to-parent representation and the147

dynamic nature of path compression complicate the expression148

of invariants, function termination criteria, and other properties149

necessary for verification.150
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Fig. 1. A representation of a valid union-find data structure, demonstrating
the relation of the underlying parents indices to nodes and Ids to directional
edges. Roots are highlighted.

The representation of union-find in egg is implemented as a 151

struct containing a parents vector where each index is a node. 152

The vector holds Ids, which wrap unsigned 32-bit integers and 153

represent directional edges corresponding to the index of each 154

node’s parent. A visual representation of parents is given in 155

Fig. 1. This figure shows a forest where each node points to its 156

parent along with the parents vector that corresponds to this 157

forest. Root nodes, highlighted in yellow, point to themselves. 158

Each disjoint set in union-find contains a single root that 159

represents the set. All paths along the child-to-parent edges 160

must terminate at a root, a node whose parent is itself, 161

preventing the existence of multi-node cycles. As long as the 162

above properties hold, the union-find structure is valid and 163

well-formed. The egg project presents several methods to read 164

and mutate the data structure while retaining this definition of 165

validity. 166

III. VERIFICATION IN CREUSOT AND PRUSTI 167

In this section, we compare and contrast two implementa- 168

tions of verification of this union-find—one in Creusot and 169

one in Prusti. The goal of these verifications is to confirm 170

the correctness of the union-find methods and ensure they 171

do not invalidate the well-formedness of the union-find data 172

structure. This was done by first typecasting the Id struct as 173

usize to focus on verifying the algorithms. Because Creusot 174

uses logical model derivations to reason about most values, re- 175

implementing a verified Id did not require rewriting contracts. 176

As for Prusti, the raw usize type was interpreted in contracts 177

and would require significant rewrites. Thus, Id was left as 178

usize in the final verified union-find in Prusti. 179

A. The Invariant 180

The basis of our verification relies on what we’ve defined as 181

the union-find invariant. As a precondition and postcondition, 182

it allows us to validate the instance of union-find before and 183

after public function calls. If the invariant properties are not 184

guaranteed, the internal functions may fail to execute properly 185



#[predicate]
fn invariant(&self) -> bool {
pearlite! {
self.len() <= u32::MAX@ &&
self.len() == self.dist.len() &&
forall<i: Int> 0 <= i && i < self.len() ==>
self.parents[i]@ >= 0 &&
self.parents[i]@ < self.len()

forall <i: Int> 0 <= i && i < self.len() ==>
(self.dist[i] == 0 && i == self.parents[i]@)
|| (self.dist[i] > 0 &&
self.dist[i] > self.dist[self.parents[i]@])

}
}

Creusot uses a logical Int type in specs to compare integer values. We
also defined self.len to serve as shorthand for self.parents.len.
self.dist is a sequence to correspond indices in parents to distances.

predicate! {
fn invariant(&self) -> bool {
self.size() <= u32::MAX as usize &&
forall(|i: usize| (i < self.size()) ==>
self.parent(i) < self.size())

forall (|i: usize| (i < self.size()) ==>
(self.dist(i) == 0 && i == self.parent(i))
|| (self.dist(i) > 0 && self.dist(i) >
self.dist(self.parent(i)))

triggers=[(self.dist(self.parent(i)))]
)

}
}

In Prusti, we defined dist as a function to compute the distance of a node
to root. Prusti also has triggers to only instantiate the forall quantifier
when computing a the parent of a node’s dist. Because Ids are cast as

usize, we only need to ensure an upper bound for i.

Fig. 2. Creusot vs Prusti invariant

or produce incorrect results. The following three invariant186

conditions must hold during function calls to maintain well-187

formedness:188

1) The length of parents must be less than or equal to189

the maximum u32 value, as to not overflow the Id190

representations.191

2) Every value in parents must contain an Id representing192

a valid index in parents.193

3) For all nodes, the distance of a node to its root is zero194

if and only if it is a root. Otherwise, the distance of the195

node must be strictly more than its parent’s distance to196

root.197

The existence of a “distance to root” for a given node proves198

that the path to the root is finite, ensuring path termination.199

There cannot be a root in a disjoint set containing a cycle, as200

the distance of each node in the set would be undefined. We201

define these distances as dist using two different represen-202

tations to match the capabilities of each tool. Both invariant203

implementations can be found in Fig. 2.204

Creusot allows us to represent dist as the sequence205

Snapshot<Seq<Int>> inside the union-find struct. Snapshot206

becomes a zero-sized type during regular execution. In this207

sequence, the indexes correspond to nodes, and the values208

represent distances to root. Thus, in our invariant, we include209

the condition that the length of dist is equivalent to the length210

of parents.211

Because Prusti lacks a sequence type, we can represent212

dist as a recursive function to determine the exact distance213

from a node to its root. Beginning at zero, dist increments214

a counter for path length, on each step from child to parent,215

returning the value upon reaching the root. If any set in the216

union-find contains a cycle and therefore no root, then all217

nodes in that set will have non-terminating dists that would218

evaluate to infinity. Thus, if the counter is equal to the length219

of parents, it is immediately returned. This not only ensures220

that the function terminates, but also that cyclic structures will221

violate the invariant condition that parents must be strictly less222

than their child dists.223

B. Methods 224

This union-find data structure was implemented with a 225

focus on speed, favoring iterative methods over recursion. 226

This results in a practical yet more challenging example for 227

verification due to mutations over iterations. 228

The functions size and parent serve as simple accessor 229

methods and are the easiest to verify since they are pure, 230

i.e., they do not modify the data structure. Prusti does not 231

support reasoning about parents and its values directly as 232

Creusot does, so by labeling these accessor functions with 233

#[trusted] and #[pure], they can be re-used in contract 234

logic for verifying other functions. The default find (without 235

path compression) internally mutates an Id, current, during 236

the execution of a while loop. Through defining loop invari- 237

ants, reasoning about current is trivial—it must correspond 238

to a valid index in parents and always have the same root 239

as its initial value. 240

The functions make set, parent mut, union, and 241

find mut all take &mut self as the first parameter, a 242

reference to the union-find itself which allows for mutations. 243

Any mutation introduces the possibility of invalidating the 244

union-find structure such that it no longer conforms to the 245

invariant properties. The bulk of the verification effort focused 246

on validating these four functions against the invariant, starting 247

with a valid union-find as input. 248

1) make set: At a high level, make set creates a new 249

disjoint set containing a single root node by deriving a new 250

Id from the length of parents and pushing it to the vector, 251

returning the new Id. If the length of parents is greater than 252

232−1, the value of the new Id will overflow, causing Rust to 253

panic. As a result, make set must require that the incoming 254

length of parents is strictly less than the maximum u32 value 255

so that the final union-find may still satisfy the invariant. We 256

expect the length of parents to be increased by one with all of 257

the original nodes left unmodified. Additionally, the resulting 258

Id returned must be a valid root equal to the length of the 259

array before it was pushed. 260

In Creusot, the final result of self is denoted as ˆself. By 261

modeling parents as a Seq, we ensure that the final model 262



#[requires(self.len() < u32::MAX@)]
#[requires(self.invariant())]
#[ensures((ˆself).invariant())]
#[ensures(result@ == self.len())]
#[ensures(self.parents@[result@] == result)]
#[ensures(self.len()+1 == (ˆself).len())]
#[ensures(forall<i: Int> 0 <= i && i < self.len()
==> self.parents[i] == (ˆself).parents[i])]

#[ensures((ˆself).parents@
== self.parents@.push(result))]

pub fn make_set(&mut self) -> Id {
let id = Id::from(self.parents.len());
self.parents.push(id);
self.dist = snapshot! {
self.dist.push(0) };

id
}

In Creusot, the final result of self is denoted as ˆself. The original code
was preserved, and dist was updated with ghost code before returning the

new Id.

#[requires(self.size() < u32::MAX as usize)]
#[requires(self.invariant())]
#[ensures(result == old(self.size()))]
#[ensures(self.parent(result) == result)]
#[ensures(self.invariant())]
pub fn make_set(&mut self) -> Id {
let id = self.parents.len();
self.push(id);
id

}
#[trusted]
#[requires(self.size() < u32::MAX as usize)]
#[requires(self.invariant())]
#[ensures(self.size() == old(self.size())+1)]
#[ensures(self.parent(old(self.size())) == value)]
#[ensures(forall(|i: usize| (i < old(self.size()))
==> self.parent(i) == old(self.parent(i))))]

#[ensures(self.invariant())]
fn push(&mut self, value: Id) {
self.parents.push(value);

}

Prusti refers to the initial state of union-find as old(self) in postcondition
contracts, and requires a custom push function on self to verify.

Fig. 3. Creusot vs Prusti make set

#[requires(self.invariant())]
#[requires(query@ < self.len())]
#[ensures(self.parents[query@] == *result
&& (ˆself).parents[query@]== ˆresult)]

#[ensures(self.len() ==(ˆself).len())]
#[ensures(forall<i: Int> 0 <= i &&

i != query@ && i < self.len() ==>
self.parents[i] == (ˆself).parents[i])]

#[ensures(self.dist == (ˆself).dist)]
fn parent_mut(&mut self, query: Id) -> &mut Id {
&mut self.parents[usize::from(query)]

}

Creusot is able to ensure that no new Ids were added or removed and that
only the queried Id is mutated. The invariant cannot be ensured within the

function’s scope because of the returned mutable reference.

#[trusted]
#[requires(self.invariant())]
#[requires(query < self.size())]
#[after_expiry(
old(self.size()) == self.size()
&& self.invariant()
&& snap(&self.parent(query))
== before_expiry(snap(result))

&& forall(|i: usize|
(i < self.size() && i != query) ==>

self.parent(i) == old(self).parent(i)))]
fn parent_mut(&mut self, query: Id) -> &mut Id {
&mut self.parents[query]

}

Despite use of #[trusted], Prusti can verify pledges after the returned
reference expires. Ids are casted as usize already, so from is not used.

Fig. 4. Creusot vs Prusti parent mut

is the same as the initial after pushing it to the Seq. Using263

the snapshot! macro, we can provide ghost code to push 0264

to dist so that the invariant condition holds.265

The final value in parents must be a lone root, but266

Prusti does not allow reasoning directly about vector values267

to ensure this. Therefore, we implemented a trusted push268

function directly on union-find so that parent can be reused269

as a value accessor.270

2) parent mut: In parent mut, a mutable reference to271

self is returned to reassign the parent at the index of the input272

Id’s value. As in parent, the queried Id must have a value273

less than the length of parents. The final state of self after274

this reassignment cannot be verified within the scope of the275

function, because the mutation would occur after the return.276

We can only verify that a single mutation occurs at the location277

of the queried Id while all other values and the vector’s length278

remains unchanged. Whether the new Id is valid and does not279

introduce a cycle is dependent on the context in which it is280

called. Thus, to satisfy the invariant, we must verify conditions281

after the borrow expires. 282

In this implementation, parent mut is not a public func- 283

tion and is only used internally by union and find mut. 284

Therefore, in Creusot, we must validate the invariant as it is 285

used in those contexts. While in Prusti, parent mut must 286

be trusted as it involves access of the parents vector, but 287

we may still utilize the after expiry contract to check 288

conditions after the returned reference’s lifetime expires. Not 289

only is it possible to ensure the invariant holds, but we can 290

also use before expiry to ensure the result before mutation 291

is the same as an immutable call to parent. The contracts of 292

parent mut in both Creusot and Prusti are in Fig. 4 293

3) union: Given two valid root Ids, root1 and root2, 294

union reassigns root1 as the parent of root2 using 295

parent mut. Thus, all nodes with original root root2 now 296

are represented by root1 and the total number of disjoint sets 297

in the union-find is decremented by one. After execution, it 298

must be ensured that root1 is the parent of root2 and no 299

other indexes are changed. All other roots remain valid. With 300



#[logic]
#[requires(self.invariant())]
#[requires(i >= 0 && i < self.len())]
#[ensures(result >= 0 && result < self.len())]
#[ensures(self.parents[result]@ == result)]
#[variant(self.dist[i])]
fn find_pure(&self, i: Int) -> Int {
pearlite!{
if self.parents[i]@ == i {
i

} else {
self.find_pure(self.parents[i]@)

}
}

}

Creusot uses #[logic] to denote purely functional code that may be reused
in contracts. Creusot also requires defining an integer variant to converge

on zero and ensure function termination.

#[pure]
#[requires(self.invariant())]
#[requires(i < self.size())]
#[ensures(result < self.size())]
#[ensures(result == self.parent(result))]
fn find_pure(&self, i: Id) -> Id {
let parent = self.parent(i);
if parent == i {
i

} else {
self.find_pure(parent)

}
}

Prusti uses #[pure] for code to be used in contracts. An Id is passed as a
parameter to allow for the call to parent, rather directly accessing the

parents vector.

Fig. 5. Creusot vs Prusti find pure

additional ghost code in Creusot, the dist values among the301

original descendants of root2 are incremented by one with a302

recursive incr function.303

As an additional step in verification, we ensured that all304

descendants of root2 now belong to the disjoint set rep-305

resented by root1. Over all nodes, we must verify that306

this holds for nodes previously represented by root2 and307

that the representatives of all other nodes stay the same308

using find pure. We defined find pure as the recursive309

implementation of find. The implementation of this function310

using both tools can be seen in Fig. 5.311

Because find pure recurses on union-find, its results312

cannot be proven using a forall quantifier alone in nei-313

ther union nor find mut. Instead, it must be justified by314

find union lemma, an additional lemma which compares315

the result of find pure with the initial and final version316

of self. find union lemma has the same function body317

as find pure but ensures more specific postconditions: to318

verify that every node on every path either has the same root319

before the mutation, or if it was root2 initially, it belongs320

to root1 in the final union-find. In both Creusot and Prusti,321

it was sufficient to call find union lemma in a forall322

context on all Ids in parents to verify the above.323

4) find mut: find mut has the same interface behavior324

as find, and along the way, it performs a path halving path325

compression algorithm [9]. It does this by iteratively reassign-326

ing the Id at the current node’s parent with parent mut327

to it’s parent’s parent, or grandparent. After, grandparent328

becomes the new current, and the loop iterates again until329

the root is found. Similar to union, the goals of find mut330

include ensuring that all roots of each disjoint set remain331

unchanged and that mutations occur only along the path from332

current to root. The value returned by the operation must be333

the same as find without mutation, or find pure.334

In both verifications, an additional recursive lemma is re-335

quired to ensure that all nodes remain in the same disjoint sets336

before and after the function. find mut lemma, in a similar337

nature to find union lemma, must ensure that descendants338

of current are now represented by the root of the new 339

value, and all other roots returned by find pure remain 340

the same over every iteration. Because this new value is the 341

grandparent of current and thus shares the same root, 342

find mut lemma also must ensure the roots for all nodes re- 343

main constant throughout the function. find mut lemma is 344

called after the mutation in a forall context over all ids with 345

the current self, old, current as cur, and grandparent as 346

gp. 347

Several contracts in find mut lemma utilize an additional 348

predicate, is descendant, to reason about directional relations 349

between cur, gp, and a given Id, i. is descendant(p, 350

q) returns true if and only if there exists a path from 351

p to q, providing more evidence than simply equating the 352

results of find pure on p and q. Both find mut lemma 353

implementations can be seen in Fig. 6. 354

In Creusot, the snapshot! macro saves the intermediate 355

state of the union-find as old in every iteration before the 356

mutation with parent mut. In find mut lemma, we gen- 357

eralize two conditions; that either a given Id is a descendant of 358

cur, and its path to root has been modified, or it is not and its 359

path is unchanged. Creusot can ensure this through modeling 360

the mutation directly on a sequence model of old with set 361

and requiring its equivalence to self. The fact that cur and 362

gp have the same root needs to be proven in root lemma. 363

Invoked when cur is encountered, root lemma recurses on 364

the path from gp to its root to verify there has been no 365

mutations on its path and that gp has the same root. 366

Validating that the dist at gp is strictly less than cur can 367

be done in a single contract with index accesses in Creusot. 368

In this implementation, dist also serves as an upper bound 369

for distance and does not need to be mutated to satisfy the 370

invariant. In order to ensure exactly how much the path is 371

compressed, a decr function would need to be implemented, 372

similar to incr for verifying union. 373

For Prusti to ensure the invariant and functionality of 374

find mut, we had to reason about intermediate states of self 375

before and after the mutation as in Creusot. In place of the 376



#[predicate]
#[requires(self.invariant() && old.invariant())]
#[requires(old.len() == self.len())]
#[requires(cur@ < self.len() && gp@ < self.len())]
#[requires(i >= 0 && i < self.len())]
#[requires(old.parents@.set(cur@, gp)
== self.parents@)]

#[requires(self.dist[gp@] < self.dist[cur@])]
#[ensures(!old.is_descendant(i, cur@) ==>
self.find_pure(i) == old.find_pure(i))]

#[ensures(old.is_descendant(i, cur@) ==>
self.find_pure(i) == old.find_pure(gp@))]

#[variant(self.dist[i])]
#[ensures(result)]
fn find_mut_lemma(
&self, old: Self, cur: Id, gp: Id, i: Int) -> bool {
pearlite! {
if old.is_root(i) {
true

} else if i == cur@ {
self.root_lemma(old, gp@)

} else {
self.find_mut_lemma(
old, cur, gp, self.parents[i]@)

}
}

}

While Creusot requires less preconditions, an additional lemma is called to
ensure gp’s roots did not change. Creusot cannot prove that

self.find pure(i) == old.find pure(i) until this lemma is called
in a forall quantifier.

#[pure]
#[requires(self.invariant() && old.invariant())]
#[requires(old.size() == self.size())]
#[requires(cur < self.size() && gp < self.size())]
#[requires(i < self.size())]
#[requires(forall (|i: usize|

(i < self.size() && i != cur)
==> self.parent(i) == old.parent(i)))]

#[requires(old.grandparent(cur) == gp)]
#[requires(self.parent(cur) == gp)]
#[requires(!self.is_descendant(gp, cur))]
#[ensures(old.is_descendant(i, cur) ==>
old.is_descendant(i, gp))]

#[ensures(self.is_descendant(i, cur) ==>
self.is_descendant(i, gp))]

#[ensures(old.is_descendant(i, cur) ==>
self.is_descendant(i, gp))]

#[ensures(self.find_pure(i) == old.find_pure(i))]
#[ensures(result)]
fn find_mut_lemma(
&self, old: &Self, cur: Id, gp: Id, i: usize) -> bool {
let parent = self.parent(i);
if self.is_root(i) {
true

} else {
self.find_mut_lemma(old, cur, gp, parent)

}
}

Even with greater limitations to reasoning in Prusti, defining relationships
between Ids in old and self is enough to prove that roots remain the same

during find mut.

Fig. 6. Creusot vs Prusti find mut lemma

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

Creusot

Prusti

Spec Planning
Demo Call

Cycle Detector

Initial Invariant

Stuck on parent mut ✗

Live-coding
Demo

find mut ✓

union ✓

Stuck on find mut ✗

Code
Review Call

find mut ✓

union ✓

Fig. 7. The nine week verification timeline. This includes planning, learning to use the tools, interactions with tool developers, and milestones.

ability to snapshot values outside of contracts, the loop body377

had to be rewritten as its own function, allowing us to write378

preconditions and postconditions for self and old. Because379

we could not directly model the mutation as a setting of cur380

to gp, more preconditions than in Creusot are necessary to381

define the relation between cur and gp from old to self.382

To prove equivalence of find pure for a given i, it must383

be ensured that if i is a descendant of cur, then it must also384

be a descendant of gp in old and self respectively. Then, it385

can be ensured that if i was originally a descendant of cur in386

old, then it must still be a descendant of gp in self. Prusti387

can then guarantee that i has the same root in old as in self.388

IV. VERIFICATION TIMELINE 389

In this experience, formal verification was not a linear or 390

straightforward process. This verification was performed over 391

nine weeks by the first author. Initially only meant to be done 392

in Creusot, the decision to include Prusti was made in response 393

to encountering obstacles in Creusot’s logic in Week 4. Here 394

we detail the development timeline, which is depicted in Fig. 7. 395

A. Strategizing (Week 1) 396

Creusot was chosen as it is one of the most popular verifi- 397

cation tools for Rust. To contribute to other Rust correctness 398

efforts, we examined the e-graphs project, egg, and chose to 399



verify its union-find implementation. We initially defined our400

verification goals along two requirements that define a union-401

find:402

1) All nodes must point to some other node or itself.403

2) All paths along every node must not contain a cycle,404

terminating with a self-loop at a root.405

B. Setup and Learning Specs (Week 2)406

Installing dependencies for Creusot, Why3, and407

WhyCode—a VS Code extension made by the Creusot408

developers to replace Why3 IDE—took significant time. I409

began looking at existing projects verified with Creusot such410

as the SAT solver CreuSAT [10]. Creusot’s use of Rust411

syntax in predicates and logic made it easy to understand and412

define my own specifications. However, there are very few413

works available which use Creusot, and simply examining414

well-defined contracts offers little insight into the process415

behind their design.416

As WhyCode development is still in the early stages, I had417

trouble executing it and tried building it from source. This led418

me to begin talking with the main developer for Creusot, and419

after a video call, I understood how to use Why3 IDE and420

refined the predicate for goal 1.421

C. Understanding Limitations (Weeks 3-4)422

Towards verifying goal 2, I referenced loop-detection al-423

gorithms I was familiar with in programming. This involved424

tracking and ensuring the uniqueness of visited nodes, but425

became difficult to ensure within the SAT solver time limits426

in Why3.427

I also tried expressing these goals as type invariants. How-428

ever as a type invariant, goal 2 could not be verified in the429

case of parent mut, which returns a mutable reference to430

an Id in the union-find. From a paper on implementing type431

invariants in Creusot, I learned it can only make guarantees432

about values within the scope of functions with prophecies,433

while Prusti’s pledges and after expiry can reason about434

the mutable reference outside of a function’s scope [11].435

Therefore, verification in Prusti was considered to address436

these roadblocks.437

D. Switching Scenery to Prusti (Weeks 5-6)438

As Prusti and Creusot’s syntax share many similarities,439

learning the tool’s keywords and porting existing contracts440

into Prusti was fairly straightforward. The major limitation441

was that an equivalent model type in Creusot for reasoning442

about vectors is not available in Prusti. All accesses to vector443

indices must be trusted, and find root was adapted from444

find pure as a predicate to ensure that a root could be445

found after traversing a path less than or equal to the length of446

parents. Setting find root as an invariant condition over447

all nodes for goal 2 was not enough to verify the current-448

grandparent relationship in find mut on its own.449

At the end of week six, I was able to video call the principal450

investigator for Prusti. I learned that the invariant definition451

could not be unraveled without induction on find mut. I452

also gained a better understanding of features not well covered 453

in the user guide, such as quantifier triggers, which improve 454

verification efficiency. 455

E. Utilizing Induction with Recursion (Weeks 7-8) 456

At the beginning of week seven, a live debugging session 457

from the main Creusot developer on a similar path com- 458

pression implementation helped to reform the predicate and 459

develop a strategy for find mut. I learned that incorporating 460

a dist sequence and recursive helper lemmas for find mut 461

was the missing piece. This approach allowed me to verify 462

that the mutable implementation preserved the results of 463

find pure for all nodes. In the following dats, this strategy 464

was successfully applied to union, ensuring that only the root 465

of the unioned components was modified. The union-find was 466

fully verified with Creusot in week eight, alongside Id, which 467

was easily re-implemented due to most of the logic using 468

model types. 469

F. Applying Strategies Across Tools (Weeks 8-9) 470

Redefining the dist sequence as a function to align with 471

Prusti’s requirements was necessary in progressing the verifi- 472

cation of the union-find. Similar to Creusot, both parent mut 473

and union in Prusti required additional recursive lemmas to 474

complete the verification. The differences between implemen- 475

tations are shown in Section III. 476

Ultimately, understanding the limitations and capabilities 477

of the underlying frameworks, alongside how to build up 478

to stringer contracts—whether through additional contracts or 479

lemma functions—was crucial to verifying this data structure. 480

To help software engineers reach this stage more efficiently, 481

changes to the design of these tools are necessary. 482

V. DISCUSSION 483

While intended to be used by Rust programmers, we argue 484

that these tools require additional design work to be used 485

efficiently by programmers today without beforehand knowl- 486

edge of formal methods. We develop four recommendations 487

to bridge this gap. 488

A. Straightforward Setup and Onboarding 489

The first obstacle a developer meets in the formal verifi- 490

cation process is in installation and setup. It is critical to 491

simplify this process in order to increase adoption, which 492

requires significant engineering effort on behalf of the tool 493

designers [12]. 494

Prusti streamlines the setup process with Prusti Assistant, 495

a VS Code extension that automatically installs Prusti and 496

related dependencies. Prusti Assistant can be configured to 497

verify-on-save, emulating the immediate compilation feedback 498

from popular extensions such as Rust-Analyzer [13]. Its in- 499

terface is intuitive to users of modern IDEs with underlined 500

failing code and hover-to-view details. 501

While the WhyCode extension is under development, it 502

currently only displays failing contracts as they appear in 503

Coma, Creusot’s intermediate verification language (IVL). To 504



install Why3 and other dependencies, Creusot requires opam,505

OCaml’s package manager. Unlike Prusti and Viper, Creusot506

and Why3 have different development teams. Other tools such507

as Why3find [14] are compatible with Creusot, but users508

must manage Why3 versioning compatibility between them509

as Coma is in the process of integration as an official Why3510

language.511

The current recommended process is to compile with512

Creusot and launch the Why3 IDE, which opens an exter-513

nal executable window. From there, the user may manually514

select provers and strategies or have them run automatically.515

While the UI is antiquated to modern standards, it is able to516

transpose Coma logic back onto the original Rust code, re-517

contextualizing failing contracts for debugging.518

Prusti offers a more familiar first introduction compared519

to Creusot. The easy installation and interface is similar to520

tools Rust programmers are already using. Creusot’s multi-521

step build process can be time-consuming and use of the Why3522

IDE interface provides too much detail for most cases of veri-523

fication. Despite wielding more advanced capabilities, Creusot524

may make it harder for programmers to get started verifying525

code. If formal verification can be integrated smoothly into the526

development pipeline, more users may adopt it and gradually527

explore its advanced features.528

B. Greater Support for Debugging Verification Failures529

Rust has commendable error messages which often provide530

hints and suggestions to resolve the error [15]. It is signif-531

icantly different from the experience of debugging formal532

verification logic, as contract failures often provide little533

guidance toward how to resolve them. It is tempting to fall534

into “guess and check” tactics of debugging to deduce whether535

logic is incorrect due to a trivial mistake or that not enough536

context has been presented to be verified.537

Prusti’s feedback is displayed minimally via red underlines538

in the IDE. This is helpfuls point out issues in simple539

cases, such as forgetting to ensure a precondition for a540

function when it is called inside another context. Prusti has541

a number of flags that can be set in Prusti.toml as well.542

The counterexamples flag is useful for identifying simple543

integer logic errors in contracts. However, when this flag544

is enabled, Prusti will attempt to generate counterexamples545

for every failing contract. This often results in nonsensical546

counterexamples and may even panic if the operation involves547

unwrapping an Option type, which could possibly be None548

in a counterexample.549

Code with Creusot contracts must first be compiled with550

cargo creusot, which is able to catch syntax and type errors.551

There are several instances where error messages could be552

designed to provide more context. For example, attempting to553

use a for or while loop in pearlite blocks throws a parse554

error, but a new user might not know that loop logic can’t555

be used in pure contexts. The error message could serve as a556

learning opportunity about purely functional programming. If557

the user accidentally appends @ to the end of a Int or Seq type558

to produce a model, they get the error that ShallowModel is559

not implemented for that type. This is because Int and Seq 560

are already model types, so a more informative error message 561

might explain this fact and suggest to remove the @ in Rust- 562

like fashion. 563

Because Creusot exposes the Coma IVL, it provides more 564

information on what specifically fails to verify. Such is the case 565

for defining recursive variants to ensure function termination. 566

These hidden conditions involve checking if a variant is strictly 567

decreasing or is always positive, which are implied by the 568

variant contract but only explicitly implemented in the Coma 569

translation. For more advanced debugging in Why3, users can 570

also manually apply tactics such as split vc to further split 571

the Coma verification goals into subgoals. 572

Trivial contract failures benefit from simple feedback, but 573

sometimes a deeper look is required to understand the full 574

scope of why a verification fails. Ideally, programmers should 575

be able to receive immediate feedback and examine the 576

execution of their contracts within the same tool. Programmers 577

typically don’t need to use a debugger for every error, but 578

having access to debugging tools helps identify issues in 579

regular code development. The same should apply to formal 580

verification to match this expectation. 581

C. Pedagogical User Guides and Documentation 582

The user guide is meant to inform users about a tool’s 583

functionalities and keywords. While this level of depth may be 584

adequate for completing simple proofs of safety and correct- 585

ness, there is little support to help users develop strategies to 586

tackle verifying complex properties. Without a formal methods 587

background, Rust programmers may need additional instruc- 588

tion on how to construct efficient and effective contracts. 589

Creusot’s user guide is minimal, focused on explaining 590

syntax and features. There are a few simple examples to 591

demonstrate contract usage, but it lacks strategies in how to use 592

them in bigger contexts. The guide contains outdated features 593

like the ghost! macro and has yet to cover features such 594

as DeepModel for comparing model types. Seq, or logical 595

Sequence, is mentioned briefly, but is missing some key doc- 596

umentation in both the guide and crate documentation among 597

other logical types. As a result, to know which functions can be 598

performed on Seq, the user has to reference its implementation 599

in the source code. Logical data structures are powerful tools 600

in Creusot for modeling Rust types but are obscured from new 601

users by lack of documentation. 602

Prusti’s guide assumes that the user has a basic understand- 603

ing of Rust and contains a tutorial project verifying a singly- 604

linked list. Though the logic of the example is simple, covering 605

only functional-style Rust, it shows how to fully verify a data 606

structure from start to finish using the capabilities of Prusti. 607

The feature sections contain tips for effective use and include 608

features still in development. There remain some features with 609

underdeveloped explanations, such as triggers, where the 610

user must turn to the Viper guide to gain a better understanding 611

of how they work. Prusti has a well explained user guide, but 612

lacks depth in tactics for verifying realistic Rust code. 613



Another tool, Verus, [16] also has a user guide, and as-614

sumes the user has established knowledge of Rust but not of615

formal verification. In addition to a quick-reference, the guide616

explains why proofs might fail, how to utilize recursion to617

perform induction, and how to ensure the tool is being used618

optimally for efficient verification. This textbook-level detail619

is closer to what Rust users need by explaining just enough of620

the backend functionality and formal methods theory to use621

the tool successfully.622

Development teams ultimately have the deepest knowledge623

of their tools. Consulting with the Creusot and Prusti devel-624

opers throughout this study gave us invaluable guidance that625

wasn’t otherwise available online. If formal verification is to626

become more common within software engineering in Rust,627

this approach does not scale. Creating tutorials and video628

demos that showcase realistic and complex examples of the629

iterative process of developing and debugging contracts over630

time would address this gap in publicly available learning631

resources. It’s crucial to keep learning resources updated632

while considering the prerequisite knowledge of the growing633

userbase.634

D. Easily Expressed Logic for Modeling Data635

Minimizing the complexity required to verify code is a636

major contributor toward tool usability. The logic that is637

exposed to the user can complicate verification if its abilities638

and limitations are not well expressed. One example of the639

logic programmers currently must manage independently is640

modeling data into types that can be interpreted in the verifi-641

cation layer.642

Prusti can deal with Rust datatypes without need for a643

model type in logical contexts, allowing for contracts that are644

more syntactically similar to Rust code. While Prusti doesn’t645

have a complete sequence model, currently only supporting646

Int or Bool type models, it wasn’t necessary to verify non-647

trivial functions in our union-find implementation. The use of648

#[extern spec] can be used to supplement verification for649

some type methods, but not in all cases such as the push650

function on vectors. Operations that are unsupported require651

the #[trusted] label, which, if misused, can compromise652

soundness. The more the tool must be allowed to trust func-653

tions, the more difficult it is to fully verify programs.654

Creusot, on the other hand, allows programmers to cleanly655

derive model types for use in contracts. Once users understand656

how to derive a model, the data becomes more powerful657

in verification as it can be directly interpreted by Why3.658

However, complications arise as types can convert into their659

ShallowModel type but not vice versa. As a result, almost660

all logic must be verified through model types. If a custom661

type can be accurately modeled by the user, then it can662

be verified. Despite requiring more effort on behalf of the663

user to conceptualize and define models, it allows for greater664

expression in verification and ultimately a stronger proof of665

correctness.666

VI. RELATED WORK 667

1) Rust verification: Rust, while being a new language, has 668

received significant interest from the verification community 669

due to its intended use in safety-critical systems, influence 670

from type theory in design of ownership types, and due to its 671

relatively broad adoption as a memory-safe systems language 672

of the future. Projects such as Oxide [17] and RustBelt [18] 673

have built on a rich literature of separation logic [19], [20] 674

and linear type theory [21] to formalize the behavior of Rust 675

programs. RustBelt even mechanizes these programs using the 676

Iris [22] separation logic in the Coq theorem prover [23]. We 677

focus on the usability of Rust automated deductive verifiers. 678

a) Deductive Verifiers for Rust: There are relatively few 679

deductive verifiers for Rust. Two polished tools are Prusti and 680

Creusot, which extend the Viper [8] and Why3 [7] verification 681

frameworks to handle Rust respectively and are directly exam- 682

ined in this paper. In addition there is Flux [24], which imple- 683

ments Liquid Types for Rust. There is also GillianRust [25], 684

which extends the Gillian language [26] with support for Rust 685

by using the RustBelt semantic typing paradigm. Verus [16] is 686

a verification framework for converting (a subset of) Rust code 687

with logical annotations (such as contracts and assertions) into 688

corresponding SMT queries. RefinedRust [27], Aeneas [28], 689

and Heapster [29], [30] are semi-automated tools that use 690

automation in interactive theorem provers to discharge simple 691

goals, while leaving more complex goals as obligations for the 692

verification engineer. 693

Of these tools, Prusti, Creusot, and Verus are best suited for 694

verifying complex properties and integrating with a traditional 695

Rust development workflow. Flux’s refinement type logic, 696

while predictable and automated, lacks the expressiveness 697

required to encode many realistic program properties (such 698

as the quantified invariants necessary in our case study). The 699

implementation of GillianRust is not publicly available and 700

Heapster is incomplete, lacking crucial support for lifetimes. 701

Finally, RefinedRust and Aeneas are similar to Creusot in 702

flavor but with a bias towards enabling complex interactive 703

proofs. 704

The remaining candidate tools are Prusti, Creusot, and Verus 705

– of these, we targeted Prusti and Creusot. Our study (and 706

recommendations) would probably translate straightforwardly 707

to Verus, as it has a similar logic and user experience as Prusti. 708

One extra layer of complexity is how Verus exposes recursive 709

function fuel and SMT triggers to the verification engineer. 710

These subtleties might pose a challenge for encoding our 711

inductive proofs, and also might lead to more user experience 712

design recommendations. 713

2) Verification case studies: Verification case studies are 714

a popular way to demonstrate the applicability of a verifi- 715

cation tool or technique. Notable examples include Frama- 716

C in the aerospace [31] and the automotive industries [32], 717

microprocessor verification using PVS [33] and Forte [34]– 718

[36], and symbolic model checking at AWS [37]. These studies 719

demonstrate the feasibility of formal methods, when used by 720

teams of verification experts, to scale out to challenges in 721



industrial environments. By contrast, our study focuses on722

a verifying a single complex algorithm (union-find) with an723

explicit goal of distilling general usability takeaways for Rust724

verifiers.725

a) Contrastive Verification case studies: Several case726

studies contrast proofs using different theorem provers on the727

same verification problem. Vazou et al contrast LiquidHaskell728

and Coq on monoidal string matching [38]. Chen et al contrast729

Why3, Coq, and Isabelle/HOL on Tarjan’s Strongly-Connected730

Component graph algorithm [39]. The key difference in our731

work is that we focus on automated deductive verifiers for732

Rust.733

b) Union-find case studies: Union-find has seen a lot of734

attention as a verification benchmark for novel logics in inter-735

active theorem provers. The Archive of Formal Proofs (AFP)736

in Isabelle/HOL has an implementation using a separation737

logic for Imperative HOL [40]. Chargueraud and Pottier use738

CFML and a novel ghost logic to verify functional correctness739

and amortized complexity [41], [42]. Guttmann replicates the740

verification from the AFP Isabelle/HOL effort with a novel741

Kleene Relation Algebra proof technique [9], [43]. In contrast742

to these works, we focus on automated verifiers, developing743

the first correctness proof for union-find in an automated744

deductive verifier.745

3) Programming Language Usability Studies: Human-746

factors concerns and usability studies are an increasingly popu-747

lar evaluation for programming language techniques. This can748

be applied to fundamental language paradigms, such as how749

programmers write statically-typed functional programs [44]750

or the design of web automation languages [45], and also to751

proposed extensions of existing languages. LiquidJava, which752

extends Java with Liquid Types, evaluated the accessibility of753

the refinement type annotations [46]. Glacier extends Java with754

immutability and the extension was also evaluated through a755

user study [47]. Obsidian is a smart contract language with756

support for typestate, and ran a user study on the usability757

of the typestate system [48]. Our work is similar in spirit,758

with an additional emphasis on contrasting two Rust deductive759

verification techniques from the perspective of a typical Rust760

programmer.761

Most closely related to our work is Juhosova’s survey762

of usability barriers for 35 novice Agda programmers [49],763

which incorporated Agda into two weeks of an undergraduate764

Functional Programming (FP) course. The main differences765

between this work and Juhosova’s survey is in scope, target766

audience, and tooling: Juhosova examined the interactive the-767

orem proving experience for multiple FP novices on textbook768

verification challenges using a proof assistant; while our study769

examines one experienced Rust developer on realistic and770

intricate verification challenges using two automated verifiers.771

Due to these differences, most of the design takeaways from772

the studies are orthogonal. However, one common takeaway773

from both studies is the importance of pedagogical tutorials774

to help verification novices build a mental model for the775

underlying verifier.776

REFERENCES 777

[1] I. CrowdStrike, “External technical root cause analysis — channel 778

file 291,” 2024, [Online; uploaded Aug 6, 2024]. [Online]. 779

Available: https://www.crowdstrike.com/wp-content/uploads/2024/08/ 780

Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf 781

[2] S. Vaughan-Nichols, “Rust in linux: Where we are and 782

where we’re going next,” 2023, [Online; uploaded Nov 783

14, 2023]. [Online]. Available: https://www.zdnet.com/article/ 784

rust-in-linux-where-we-are-and-where-were-going-next/ 785

[3] K. R. M. Leino, “Dafny: An automatic program verifier for functional 786

correctness,” in International conference on logic for programming 787

artificial intelligence and reasoning. Springer, 2010, pp. 348–370. 788
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S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik,912

“Replacing testing with formal verification in intel® coretm i7 processor913

execution engine validation,” in Computer Aided Verification, A. Bouaj-914

jani and O. Maler, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,915

2009, pp. 414–429.916

[37] N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-917

Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle, “Code-level918

model checking in the software development workflow,” in Proceedings919

of the ACM/IEEE 42nd International Conference on Software920

Engineering: Software Engineering in Practice, ser. ICSE-SEIP ’20.921

New York, NY, USA: Association for Computing Machinery, 2020, p.922

11–20. [Online]. Available: https://doi.org/10.1145/3377813.3381347923

[38] N. Vazou, L. Lampropoulos, and J. Polakow, “A tale of two provers: 924

verifying monoidal string matching in liquid haskell and coq,” in 925

Proceedings of the 10th ACM SIGPLAN International Symposium 926

on Haskell, ser. Haskell 2017. New York, NY, USA: Association 927

for Computing Machinery, 2017, p. 63–74. [Online]. Available: 928

https://doi.org/10.1145/3122955.3122963 929

[39] R. Chen, C. Cohen, J.-J. Levy, S. Merz, and L. Théry, “Formal Proofs of 930
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